
On-Site Domestic Wastewater Treatment in India

A. A. KAZMI
DEPARTMENT OF CIVIL ENGINEERING
IIT ROORKEE

AVAILABILITY & TYPE OF TOILETS-2011 (%)

FLUSH TOILET + SEPTIC TANKSFLUSH TOILET + TWIN PIT LATRINES

SEPTIC TANK EFFLUENT DISCHARGE

Effluent Quality of Septic Tank -60-80 LPCD Water Supply: COD- 849-112 mg/L, BOD 653-912 mg/L, TSS 389-530 mg/L

SURFACE WATER POLLUTION

Moti Jheel- Lucknow

Phutala Lake- Nagpur

Pond outskirt of Village

GROUND
WATER
POLLUTION:
CoimbatoreCPHEEO & NEERI2005

Total Coliforms	Post Monsoon	1080	1100	1500	1600	900	620
(CFU/100 ml)	Winter	1150	1440	1660	1750	tnc	730
	Summer	TNC	TNC	TNC	TNC	TNC	520
	Monsoon	1100	1500	700	1000	1100	630
	•						
Faecal	Post Monsoon	840	1102	590	780	860	400
Coliforms	Winter	910	1000	600	840	TNC	420
(CFU/100 ml)	Summer	TNC	216	230	450	TNC	140
	Monsoon	940	1100	570	800	890	410

RECENT INITIATIVES BY THE GOVERNMENT ON ADVANCED ON-SITE SYSTEMS AND SEPTAGE MANAGEMENT

GOVT. OF INDIA MINISTRY OF DRINKING WATER SUPPLY & SANITATION INITIATIVES

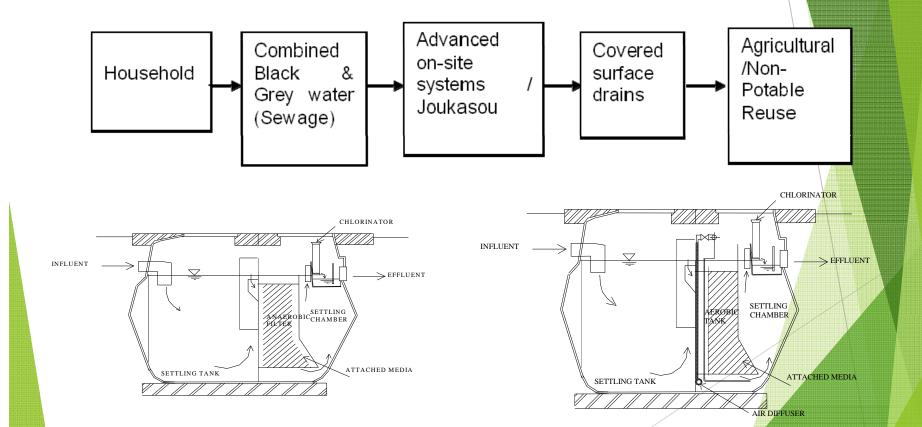
NIRMAL BHARAT ABHIYAN- TOTAL SANITATON COMPAIGN

- Complete rural sanitation upto 2002 ensure sanitation facilities in rural areas with broader goal to eradicate the practice of open defecation: it includes
 - Information, communication and education IEC Activities, Capacity Building
 - Construction of Individual Household Latrines ,Rural Sanitary Marts and Production Centers
 - Provision of Revolving Fund in the District
 - Community Sanitary Complex ,Institutional Toilets- School and Anganwadi toilets
 - Solid and Liquid Waste Management
 - Maintenance of facilities created under NBA, Administrative Charges
- Under solid liquid waste management plan
 - About Rs 700,000 (About US\$ 11000) for village having up to 150 households
 - About Rs 1,200,000 (About US\$ 20,000) for village having up to 300 households
 - ▶ About Rs 1,500,000 (About US\$ 24,000) for village having up to 500 households
 - ▶ About Rs 2,000,000 (About US\$ 32,000) for village > 500 households
 - Central Government 70 % & State Government 30 % http://tsc.gov.in/TSC/NBA/AboutNBA.aspx

Technical Options for Solid and Liquid Waste Management in Rural Areas

Ministry of Drinking Water and Sanitation, Govt. of India

August 2013


Technical Handbook- With coverage of advanced on-site sanitation

RELATED CHAPTER'S IN THE BOOK

- 2.5 On-site waste water treatment systems
- 2.5.1 Septic tanks
- 2.5.2 Advanced on-site systems
- 2.5.2.1 Package type anaerobic filter system
- 2.5.2.2 Package contact aeration system
- 2.5.2.3 Package anaerobic filter contact aeration system

RELATED CONTENTS & FIGURES

Option-3 (Safe on-site sanitation) scheme

Prefabricated septic-tank anaerobic filter Typical cross-sectional drawings of type systems package contact aeration system

GOVT. OF INDIA MINISTRY OF ENVIRONMENT & FORESTS INITIATIVES

MINISTRY OF ENV. & FORESTS RULES & REGULATION

For any new construction projects as per **State Environmental Impact Assessment Authority**(SEIAA) Clearance

Sewage Can be disposed off as below:

- By Septic tank & soak pit during the construction phase.
- By Package Sewage treatment plant in operational phase if the project don't fall under Central Sewage treatment plant.

Technology Options for Urban Sanitation in India

Sanitation Options for Different Residential Settlement Types

	Settlement	Typical	Key Issues	Options for Upgrading		
	characterist ics	existing sanitation services		On-Site	Off-site	
High Income Residenti al,	Low-density developmen t with large plots and ample open space.	Most properties have septic tanks with or without a soakaway. In some cases there are sewer connections.	are often poorly maintained, and partially	Promote or enforce improved septic tank maintenance, including periodic emptying of pits. Addition of tertiary treatment at household level (anaerobic filter or reed bed).	and disposal of septage. Sewerage combined with off-site	

Settlem		71	Key Issues	Options for Upgrading		
	ent charact eristics	existing sanitation services		On-Site	Off-site	
Multistor ey residenti al apartmen ts	High- density, medium- low income.	Either connected to sewerage or have shared septic tanks.	Malfunction of septic tanks and soak pits.	Shared septic tank followed by: a) anaerobic filter and reed bed prior to discharge into surface water; or b) discharge to small bore sewerage system.	Septage transportation and off-site treatment. Sewerage combined with off-site wastewater	
Urban village, former rural village overtake n by urban spread	Mediumhigh density, mixed income.	Coverage variable; existing toilets mostly have septic tanks or leach pits discharging into open drains or	•	Promote/enforce improved O&M, including periodic emptying of pits. Simplified sewerage in denser areas, with on-site treatment.	Septage transportation and treatment. Reuse of wastewater or sale of fish or animal feed.	

MANUAL ON SEWERAGE & SEWAGE TREATMENT-NEW CHAPTER ON ON-SITE SEWAGE TREATMENT

MANUAL ON SEWERAGE AND SEWAGE TREATMENT

PART A: ENGINEERING

FINAL DRAFT

OCTOBER 2012

CENTRAL PUBLIC HEALTH AND ENVIRONMENTAL ENGINEERING ORGANIZATION

MINISTRY OF URBAN DEVELOPMENT NEW DELHI

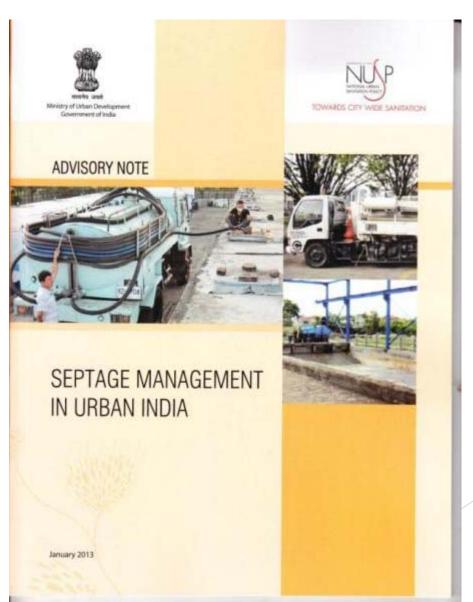
IN COLLABORATION WITH

JAPAN INTERNATIONAL COOPERATION AGENCY

	9.2.1		al Scavenging	9-2
	9.2.2	Imple	nenting Agencies	9-3
	9.2.3	Offeno	es and Penalties	9-3
9.3	In	terim M	[easures	9-3
	9.3.1	Public	and Community Toilets	9-3
	9.3.2	Mobile	e Toilet	9-4
	9.3.3	Pour F	hsh Water Seal Latrine	9-5
	9.3.3.	.1 1	Design and Materials	9-5
	9.3.3.	.2	Construction of Pour Flush Latrine	9-9
	9.3.3.	.3 1	Pollution Safeguards	9-14
	9.3.3.	.4]	Night Soil Digesters	9-16
	9.3.4	Zero D	Discharge Toilet System by IIT Kanpur bas	ed on Ecosan9-17
	9.3.5	Conve	ntional Septic Tank	9-19
	9.3.5.	.1 1	Design	9-20
	9.3.5.	.2 (Construction Details	9-21
	9.3.5.	.3	Sludge Withdrawal and Disposal	9-22
	9.3.5.	.4	Secondary Treatment and Disposal of Efflo	ıent9-23
	9.3.5.	.5	Soak Pits	9-23
	9.3.5.	.6	Dispersion Trenches	9-24
	9.3.6	Improv	ved Septic Tank	9-24
	9.3.6.	.1 1	Up-Flow Anaerobic Filter	9-24
	9.3.7	Packag	ge Septic Tank – Anaerobic Filter Type Sys	tem9-27
	9.3.8	On-site	e Package Septic Tank - Contact Aeration 1	Type System9-28
	9.3.9	Advan	ced Anaerobic - Aerobic Type On-site Tree	atment System (Johkasou)9-28
	9.3.9.	.1	Classification of Treatment Systems	9-28
	9.3.9.	.2	System Configuration	9-29
	9.3.9.	.3 1	Example Design in Japan	9-30
	9.3.9.	.4	Features	9-34
9.4	De	ecision	Making for On-site Treatment Technology.	9-35

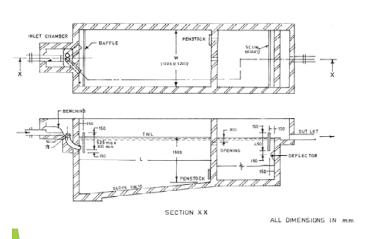
INTRODUCTION AND DESIGN FEATURES OF ADVANCED ON-SITE SYSTEMS

Table 9.9 Classification according to treatment capacity (Example of Japan)


Packa	On-site construction-type		
Small-scale	Medium-sca 1e	Large-scale	Medium/Large-scale
(About 5 to 50 people)	(About 51 to 500 people)	(Approx. 500 to 5,000 people)	(More than 500 people)
			THE TANGORA

ii. Performance

Treatment processes are classified into three kinds according to performance: a proce that mainly removes BOD-related contaminants, a process that removes BOD-relate contaminants and nitrogen, and a process that removes BOD-related contaminant nitrogen, and phosphorus.


SEPTAGE MANAGEMENT

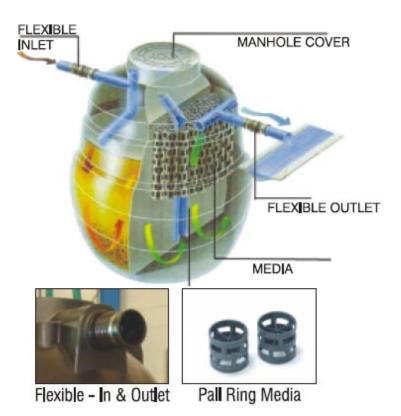
ADVISORY NOTE ON SEPTAGE
MANAGEMENT

OPTIONS FOR SEPTAGE MANAGEMENT

TYPICAL ON-SITE SYSTEMS IN INDIA

Structure of a septic tank, Source: CPHEEO, 1993

Precast Septic Tank


Vinayakashot Private Limited, Ltd

Prefab Polyethylene Cast Septic Tank

Sintex Pvt. Ltd

ADVANCED VERSIONS

- The capacity ranges from 800 to 6000 l/d.
- Claims: Excellent performance through massive reduction of BOD around 70-80%

SETTLER- CONTACT AERATION

- ➤ The capacity ranges from 800 to 6000 I/d.
- Effluent can be used for irrigation, gardening.

Source: Sintex Pvt. Ltd

PERFORMANCE EVALUATION

MODIFIED SETTLER-ANAEROBIC FILTER COMBINED SINGLE HOUSEHOLD WASTEWATER TREATMENT

Background: Where ground conditions do not permit infiltration of treated wastewater, additional treatment in the form of a constructed wetland or anaerobic filter could be provided prior to discharge into a drain or watercourse. This option should only be considered if management systems for the treatment facilities can be guaranteed, a condition that very often cannot be met.

Technology Option for Urban Sanitation in India

BACKGROUND INFORMATION

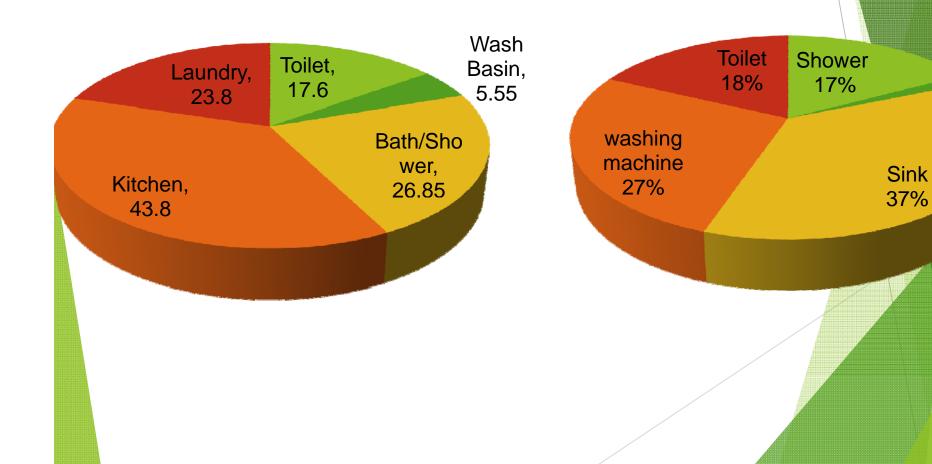
- Single Household: Middle Class
- ► Water Supply 135 Litre/Cap.day
- Members: 5
- Size of Tank 1200 L
- Materail : Polyethylene
- Media of Anaerobic Filter: Poly-ethylene
- ► Specie Surface Area of Media 100 m2/m3

Package Plant

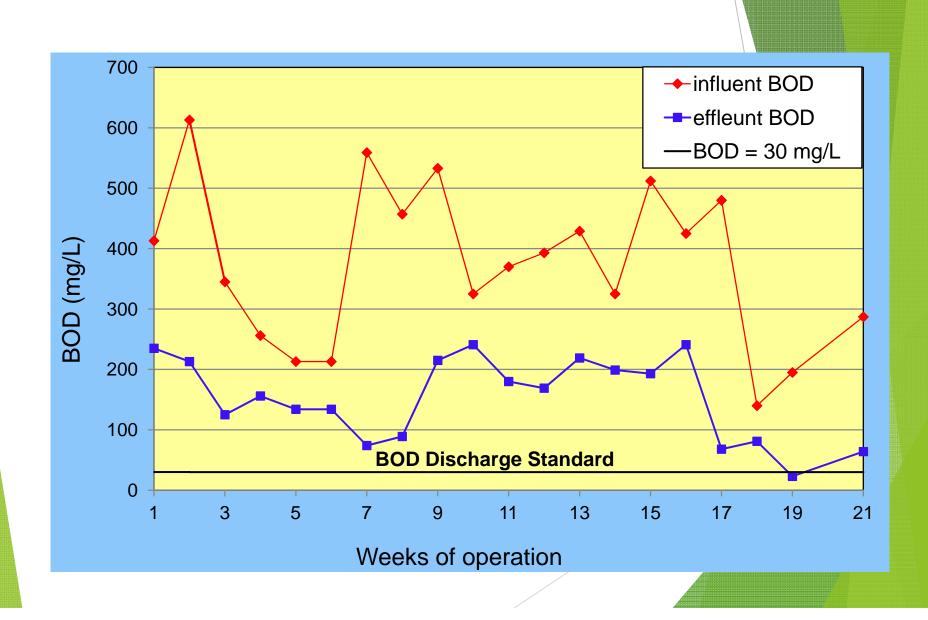
PLANT WITH INLET OUTLET CONNECTION COVERED PLANT WITH MANHOLE

PLANT WITH WASTEWATER

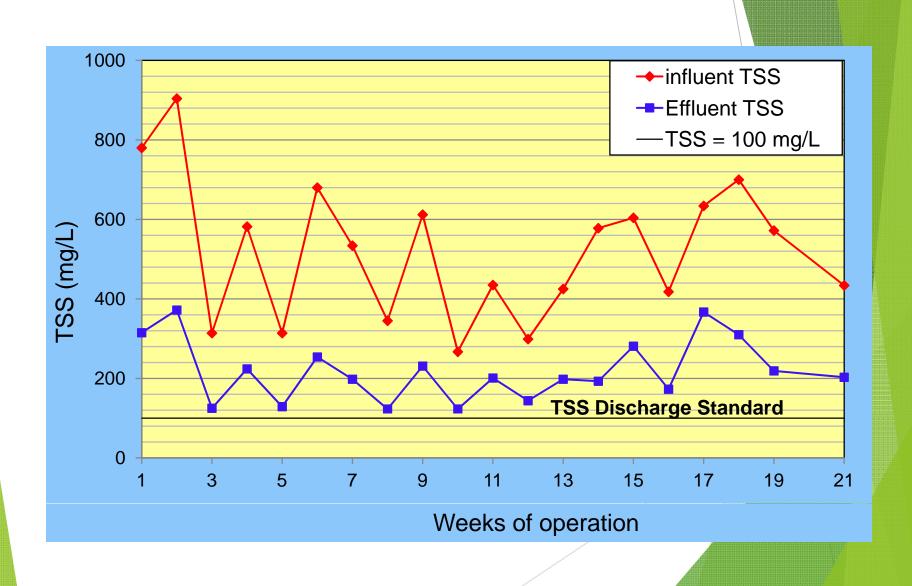
WASTEWATER CHARACTERIZATION


Wastewater Quantity (%)

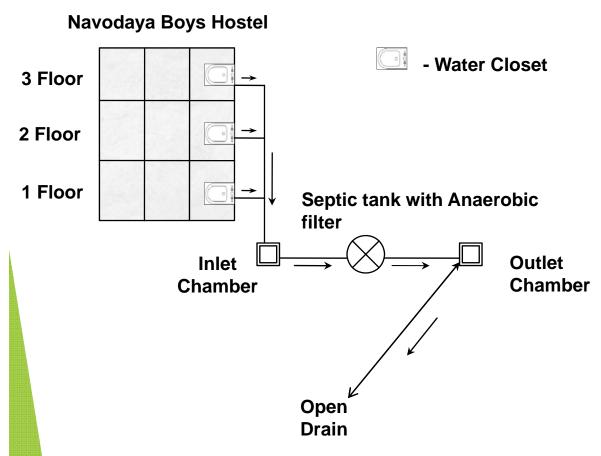
COD Load Generation %


Washba

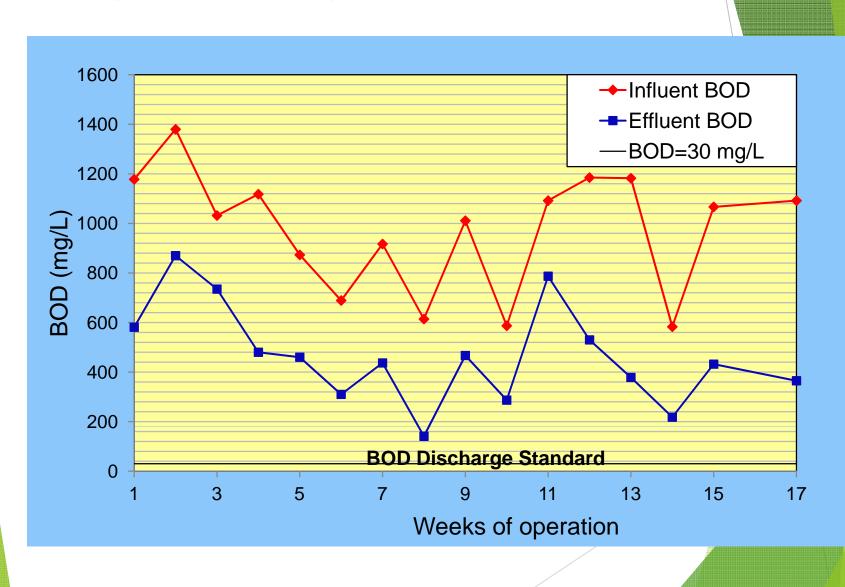
sin


1%

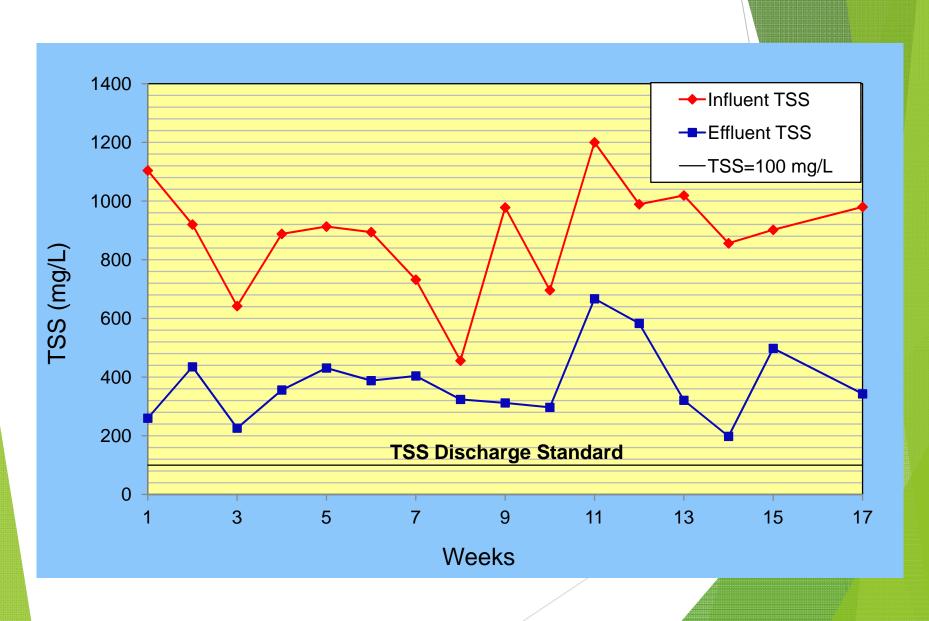
BOD REMOVAL


TSS REMOVAL

MODIFIED SETTLER-ANAEROBIC FILTER BLACKWATER TREATMENT- COMMUNITY SCHOOL


LAYOUT OF THE SYSTEM

- **130 STUDENTS**
- 1000-1500 LITERS PER DAY



BOD REMOVAL

TSS REMOVAL

SEPTAGE CHARACTERIZATION

Constituents	Units	Combined Wastewater	Blackwater	EPA Design Values
BOD	mg/L	9,389	35,546	7,000
COD	mg/L	37,238	89,409	15,000
TSS	mg/L	19,322	39,945	15,000
VSS	mg/L	14,372	37,563	10,000
TKN	mg/L	738	1,015	700
NH ₃ -N	mg/L	172	243	150
TP	mg/L	197	294	250
Total Coliforms	MPN/100mL	1.50E+06	4.50E+09	10E+07- 10E+09
Fecal Coliforms	MPN/100mL	7.50E+05	2.30E+08	10E+06 - 10E+08
E.Coli	CFU/mL	4.30E+03	150E+05	10E+05 -10E+08
Salmonella	CFU/mL	2.50E+03	2.30E+04	1 - 10E+02

CONTACT AERATION TYPE SYSTEM

- Capacity 6000 L/day
- Type of Wastewater- Hotel

Water Quality Parameter	Influent	Effluent
COD (mg/L)	456-1009	86-574
BOD (mg/L)	104-306	32-76
TSS (mg/L)	350	89
TKN (mg/L)	120	62
PO ₄ -P (mg/L)	8.3	3.7

PRESENT NEED:

- To develop a new generation of:
 - highly efficient,
 - compact,
 - user friendly
 - low priced treatment systems
- A new approach in design, fabrication and operation
- Rigorous septage management strategy- separate department in Government
- Subsidy from the Government
- Local Manufacturing of Blowers
- Capacity Building- Manpower Training
- Educational Programmes
- Mass production methods serve public:
 - reliable, effective.
 - robust and reasonably priced treatment plants