

DECENTRALIZED APPROACHES TO RURAL WASTEWATER TREATMENT IN CHINA: SITUATION AND CHALLENGE

Dr. Meixue Chen Dr. Xuesong Guo

North Center for Rural Wastewater Treatment Technology Research Ministry of Housing and Urban-Rural Development, China

Nov. 20,2013

Domestic wastewater treatment coverage in population by on-site and off-site systems

Domestic wastewater treatment rate in urban from 1991 to 2011

Domestic wastewater treatment rate in urban in 2011 year

Domestic wastewater treatment rate in 2011year

Water Pollution Situations

Good water ratio: percentage of sections meet Class I-III standards

Construction of MWTPs contributes to the improvement of water quality. But it is not enough.

Pollution loads

	town	village	T&V	city
SV(10 ⁸ m ³ /a)	3.6	5.6	9.2	33.0
COD(10 ⁶ t/a)	2.6	5.4	8.0	8.6
$N(10^6t/a)$	0.5	1.1	1.6	0.97
$\mathbf{P}(10^6 \mathbf{t/a})$	0.04	0.07	0.11	

SV: sewage volume

Support systems at national/local level by government for promotion of on-site domestic wastewater treatment

Guides

不同区域农村生活污水处理技术指南

Technical code and specification

Introduction of several popular on-site treatment technologies in China

Decentralized technologies

- ✓ Reduce the effect on the environment and public health
- ✓ Increase the ultimate reuse of wastewater
- ✓ Overcome the problem associate with site conditions and flexible in management
- **✓ Cost**

Needs for decentralized wastewater systems

- 1. Satisfy the demand of public health and various water quality goals;
- 2. Economic suitability of processing technologies;
- 3. Operation simple and easy routine management.

Types of decentralized wastewater systems

- Primary treatment
 - Septic tank
- Secondary treatment----Biological technologies
 - Biofilm
 - Anaerobic digesters
- Eco-technologies
 - Constructed wetlands
 - Leach trenches
- Community Systems

Case study: Septic tank

- Inexpensive
- Simple to maintain

- Sludge may cause an odor problem
- Not effective in removing nitrate and phosphorus and pathogenic organics
- Potential pollution source of groundwater

Case study: Anaerobic Treatment

Case study: Activated sludge

1m³,2m³,5m³,10m³,15m³/day

- Flexible for decentralize wastewater treatment
- Automatic control
 - Expensive for single family
 - management is relative complex

Case study: Constructed wetland

- constructed cost
- flexible land use
- Low removal rate
- Management

Case study: Leach Trenches

- Constucted and operation simple
- Low cost
- pollution of groundwater
- Poor quality of effluent

Case study: anaerobic tank+ ladder eco-filter

Energy save

Unit: mg/L

						0,	
item	COD	BOD_5	NH ₄ ⁺ -N	TN	ТР	SS	
Influent	400	150	25	40	4	200	
Effluent	60	20	8	20	1	20	

- Amonium and phosprous removal
 - Odor

Case study: Anearobic+ drop aeration + constructed wetland

Case study: Bio- rotation + vegetable tank

3~10t/d, COD concentration is 100~100mg/L

- Suitable in south area
- Vegetable management complex

Case study: Cluster system

- Cluster system
- High quality of effluent

Decentralized wastewater systems

For COD removal

4For nitrogen removal

Challenges in promoting on-site wastewater treatment

Situation

- Lack of knowledge of decentralized systems
- Lack of long-term operation data
- Management needed
 - systems are a cost-effective and long-term option for meeting public health and water quality goals
 - Who is responsible? Typically homeowner for onsite, Inadequate methods of needs assessment

Developing for decentralized system in China

Developing for decentralized system in China

Specifications

•R&D of technologies

Long-term evaluation

Operator training

Thanks for your attention!

