

Standardization of on-site treatment in China

Dr. Meixue Chen

North Center for Rural Wastewater Treatment Technology Research Ministry of Housing and Urban-Rural Development, China

DEC. 2014

standards of on-site wastewater treatment

Domestic wastewater treatment rate in 2011year

Up to the and of 2010, 22.9% of domestic wastewater from towns and villages

wastewater treatment ratio with 1% increasing every year

Situation

- Diversity
- Management
 - Who is responsible? Typically homeowner for onsite, Inadequate methods of needs assessment
 - Standalization

Case study: Septic tank

- Inexpensive
- Simple to maintain

- Sludge may cause an odor problem
- Not effective in removing nitrate and phosphorus and pathogenic organics
- Potential pollution source of groundwater

Case study: Anaerobic Treatment

- Low cost
- Energy use
- Low removal rate
- Maintenance is necessa

Case study: Activated sludge

1m³,2m³,5m³,10m³,15m³/day

- Flexible for decentralize wastewater treatment
- Automatic control
 - Expensive for single family
 - management is relative complex

Case study: Constructed wetland

- constructed cost
- flexible land use
- Low removal rate
- Management

Case study: Leach Trenches

- Constucted and operation simple
- Low cost
- pollution of groundwater
- Poor quality of effluent

Case study: anaerobic tank+ ladder eco-filter

- Energy save
- - Amonium and phosprous removal
 - Odor

Case study: Anearobic+ drop aeration + constructed wetland

Case study: Bio- rotation + vegetable tank

$3\sim10t/d$, COD concentration is $100\sim100$ mg/L

- Suitable in south area
- Vegetable management complex

Case study: Cluster system

- Cluster system
- High quality of effluent

Decentralized wastewater systems

For COD removal

4For nitrogen removal

Ecological toilet

Standard system of on-site wastewater treatment

- **☑** Technique code for village rehabilitation (GB-50445-2008)
- ☑ Technical specification of wastewater engineering for town and village (CJJ124-2008)
- ✓ Technical Specification of wastewater treatment facilities for village (CJJ/T163-2011)
- **☑** Complete equipment for domestic wastewater plant (CJ/T 355-2010)
- **☑** Technical guide for rural domestic wastewater treatment in different regions

Technical Specification of wastewater treatment facilities for village (CJJ/T163-2011)

Main models of on-site wastewater treatment in China

Main contents

How to choose the suitable technology for rural area?

- General provisions
- Terms and symbols
- 3 General requirement
- Treatment technologies
- Anaerobic biofilm tank
- Biological contact oxidation tank
- Biological aeration filter
- Oxidation ditch
- Rotating biological contactor
- Activated-sludge process
- Ecological treatment of wastewater
- Chemical phosphorus removal
- Disinfection
- Wastewater treatment facilities in village
- Wastewater treatment station in village
 Wastewater treatment station for COD removal
- Wastewater treatment station for nitrogen removal
- Wastewater treatment station for nitrogen and phosphorus removal
- Construction and acceptance of engineering quality

Main contents

Discharged standard:

- Discharge
- Reuse

Items	Grade IA	Grade IB	Grade II
COD	50	60	100
T-N	15	20	-
NH ₄ -N	5(8)	8(15)	25(30)
T-P	0.5	1	3

Unit: mg/L

3.0.3 污水的排放要求直接关系到污水处理程度和技术选择,因此,农村生活污水的排放要 求需根据国家和地方的排放要求因地制宜地确定,以保证污染物消减目标的实现和降低成 本。在没有排放要求的农村地区,针对地区的特征,建议按表 1 参考不同的排水去向的排放 要求。

表 1 村庄污水排放执行的相关参照标准

排水用途	直接排放		准派	机用水	渔业用水	景观环境用水
参考标准	污水综合 排放标准 GB8978-1996	城镇污水处理厂 污染物排放标准 GB18918-2002	水质标准	城市污水再生 利用农田灌溉 用水水质 GB 20922-2007	漁业水质 标准 GB11607-89	城市污水再生利 用景观环境用水 水质 GB/T18921-2002

Technical guide for rural domestic wastewater treatment in different regions

Environmental pressure factors

Town:

Average: 5,420 capita/km²

Highest: Shanghai, Tianjin, Guangdong and

Fujian, range from 10,000 to 13,000

Lowest: Gansu, Qinghai, Xinjiang, range

from 2,000 to 3,000

Village:

Average: 7,083/km², lower than town; Highest: Chongqing, 25,000-33,000 Lowest: Qinghai, Gansu, 500-2,000

Population density of built-up area

Environmental pressure factors

Population density of built-up area

Town:

Average: 5,420 capita/km²

Highest: Shanghai, Tianjin, Guangdong and

Fujian, range from 10,000 to 13,000

Lowest: Gansu, Qinghai, Xinjiang, range

from 2,000 to 3,000

Village:

Average:7,083/km², lower than town; Highest:Chongqing,25,000-33,000 Lowest: Qinghai, Gansu, 500-2,000

Town sewage treatment priority

- > Spatial difference is apparent. But difference is indistinctive in the priority regions between towns and villages;
- ➤ High in large area in Northern China, middle and downstream region of Yellow River.

Technical guide for rural domestic wastewater treatment in different regions

Technical guide for rural domestic wastewater treatment in different regions

Wastewater in different regions

Domestic water use (L/P. day)

Types of village	Northeast	North south	North	West north	West south	South
Good economic,bath ,flush toilet ,wash mashine	80-135	90~200	100~145	75~140	80-160	100~180
Good economic, bath and kitchen	40-90	80~100	40~80	50~90	60-120	60~120
Normal economic ,simple toilet	40-70	60~90	30~50	30~60	40-80	50~80
No flush toilet	20-40	40~70	20~40	20~35	20-50	40~60

Charactics of wastewater (mg/L)

主要指标	рН	SS	COD	BOD ₅	NH ₄ +-N	ТР
West south	6.5~8.5	100-300	100-400	50-300	3-50	1.0-6.0
Northeast	6.5-8.0	150-200	200-450	200-300	20-90	2.0-6.5
North south	6.5~8.5	100~200	70~300	150~450	20~50	1.5~6.0
North	6.5~8.0	100~200	200~450	200~300	20~90	2.0~6.5
West north	6.5~8.0	150~200	150~400	100~150	20~50	2.0~6.0
South	6.5~8.5	100~200	100~300	60~150	20~80	2.0~7.0

Technical guide for rural domestic wastewater treatment in different regions

Northeast: septic tanks, anaerobic biofilter, bio-contact oxidation tank, land treatment, constructed wetlands, lagoon

North China: septic tanks, sewage digesters, aeration tank, sequencing batch bioreactor, oxidation ditch, biological contact oxidation, constructed wetlands, land treatment

Northwest: septic tank, anaerobic digesters, anaerobic biofilter, constructed wetlands, land treatment..

Southwest: septic tanks, wetland, land treatment, anaerobic technology, biocontact oxidation tank, oxidation ditch, anaerobic biofilter

Middle south: septic tanks bio-contact oxidation, oxidation ditch, constucted wetland, lagoon, floating islands could be applied for sewage treatment.

southeast: septic tank, anaerobic biofilter, anaerobic digesters; biological contact oxidation tank, oxidation ditch, constructed wetlands, ecological filter.

- Complete equipment for domestic wastewater plant (CJ/T 355-2010)
- Household sewage treatment plant (CJ/T 441-2013)

Main contents

10- 50 M³/day Facilities (CJ/T 355-2010)

Less than 2M³/day Facilities CJ/T 441-2013)

Discharge: Biofilm

• Reuse:

(資料性所象)
工艺资素

B.1 工艺要求

B.1.1 污水处理工艺

B.1.1 污水处理工艺

B.1.1 污水处理工艺

B.1.1 污水处理工艺

B.1.1 污水处理工艺

B.1.2 当设备可采用传发活性污泥法、生物接触氧化法、等气生物滤池、原生物反应部以及实能污水处理工艺。也可采用由上建工艺中的新种或用种以上短标或的组合工艺。
B.1.2 当设备的本水度快行 GB/7 18920 或 GB/7 18921 时,其污水处理工艺宣选用便生物反应器。
B.1.2 清毒

B.1.2 清毒

B.1.2 清毒

B.1.2.1 设备应配备消毒装置。
B.1.2.2 设备的前省方式可采用氧化前等(前等间可为次实股结溶液、二氧化氯等)、常外线消毒、臭氧消毒以及其他循序技术。
B.1.2.3 对于预罗起监管运输运序生水的非现场间用情况。设备应选用氧化消率或其他消率技术。
B.1.2.3 对于预罗起监管运输运序生水的非现场间用情况。设备应选用氧化消率或其他消毒技术。
B.1.2.3 对于预罗起监管运输运序生水的非现场间用情况。设备应选用氧化消率或其他消率技术与氧化消率的自分,以高级理处量
设备产生的剩余污泥或/和化学污染可排至化类能或专用的集现能处理。设备内应配条件犯单或其此经验出生物

	Technologies	P	G
1	Anaerobic +biofilm	\checkmark	
2	Anoxic- oxic biofilm	\checkmark	
3	Anaerobic digestion		$\sqrt{}$
4	Anoxic/ anaerobic biofilm		$\sqrt{}$
	a) 当设备选用生物接触氧化工艺时,宜采用斜板沉淀剂	4作为因被分离装置:	1 11 3

Main contents

A.2 型号 A.2.1 设备型号以小型生活污水处理或套设备代号(CT)、出水水质代号、设备额定处理能力代号以 及安装方式代号组合而成: CT - _ -安装方式代号 设备额定处理能力代号 出水水质代号 A.2.1.1 出水水质代号:设备出水通常可达到三种不同的水质等级,按其去向或用途执行不同的水质 标准,分别以P、Z、J作为三种水质等级的代号。 P--出水水质执行 GB 8978-1996 -级标准; Z-出水水质执行 GB/T 18920; J---出水水质执行 GB/T 18921。 A. 2. 1. 2 设备额定处理能力代号:以设备额定处理能力的数值(单位是 m²/h)作为其代号。 A.2.1.3 安装方式代号:设备的安装方式有地上式、埋地式和移动式三种类型,分别以 D、M、Y 作为 代号。 D-地上式; M----理地式; Y——移动式。 A. 2. 2 型号示例: CT-Z-10-D 表示:出水水质挟行 GB/T 18920、额定处理能力为 10 m¹/h、安装方式为地上式的小型 生活污水处理成套设备。

Challenges and future

Challenges and future

- Reusing effluent for more sustainable sewage treatment practices in Chinese villages.
- Supervision in sewage treatment facilities. Appropriate regulatory authorities to be responsible for daily testing of water quality in sewage treatment facilities.
- Suitable disinfection processes must be applied in the rural sewage treatment process.

Thanks for your attention!

