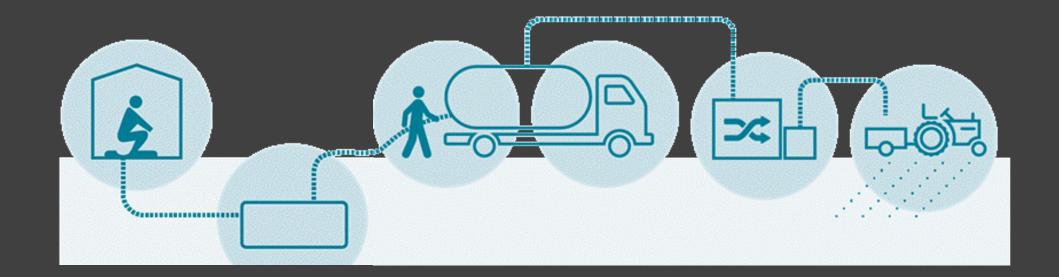
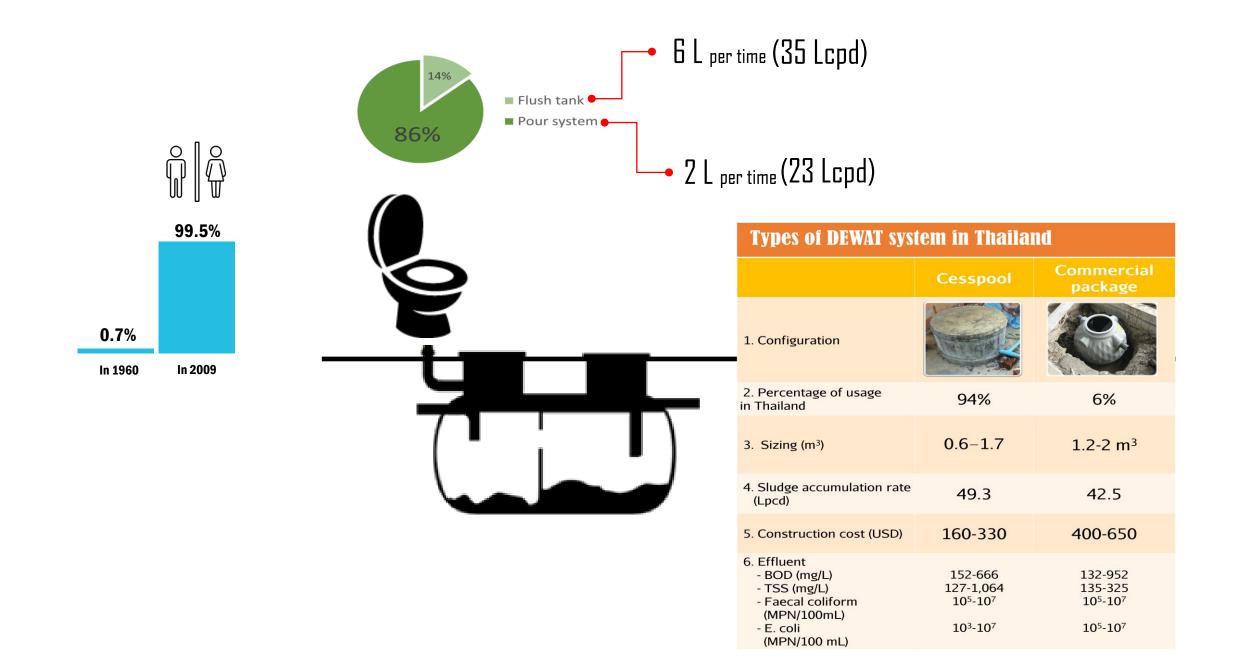
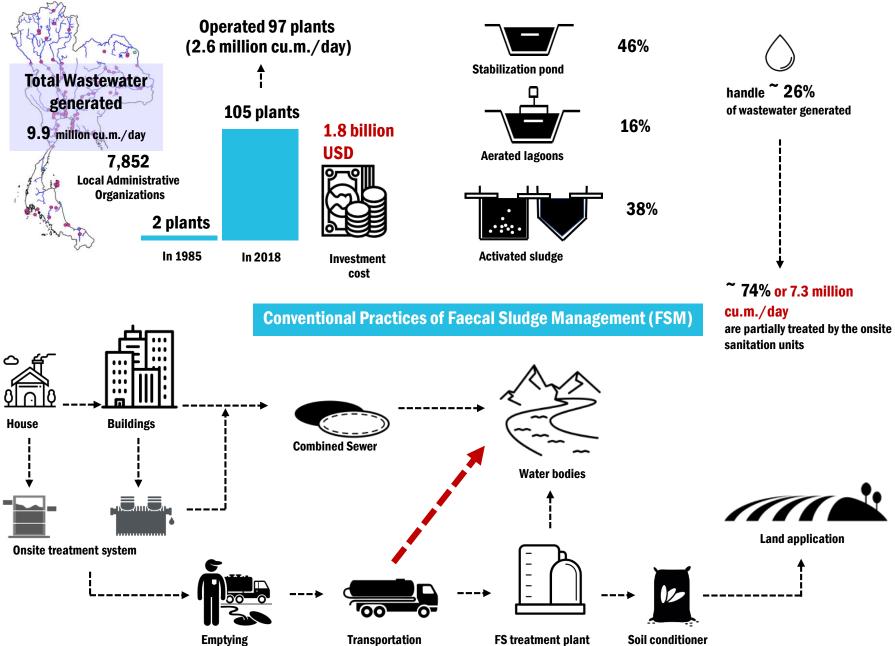

Toward Sanitation Challenges in Thailand



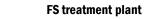


Prof. Thammarat Koottatep

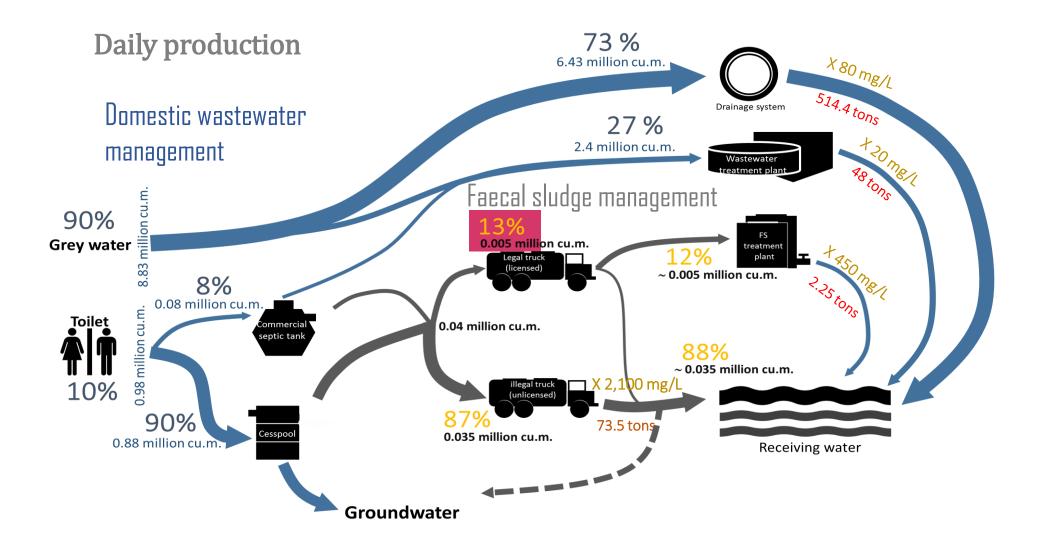
Environmental Engineering & Management Asian Institute of Technology, Thailand



Sanitation Situation



Domestic Wastewater Management



Emptying

Soil conditioner

Unveiled Sanitation Issues in Thailand

Reinvented Toilet Technology

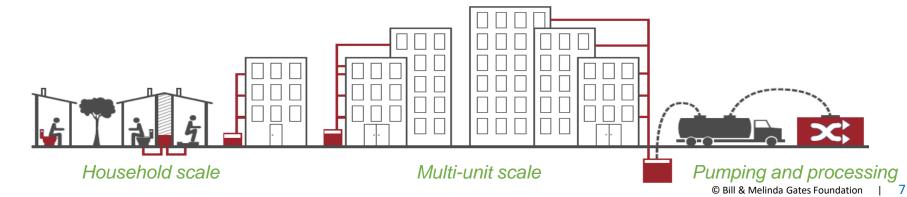

The Reinvented Toilet is a modular, transformative technology that offers a non-sewered sanitation solution, eliminating the need for a piped collection system. The aim of the Reinvented Toilet is to: destroy all pathogens onsite and recover valuable resources, operate without sewer, water or electricity connections and cost less than \$0.05/user/day in a sustainable business model.

ELIMINATE PATHOGENS

- Eliminate safety concerns via handling
- Reduce disease burden
- Improve environmental safety

OPERATE OFF GRID

- Eliminate need for external inputs such as water and energy
- Make portable and easy to install



CONVEY LOW LIFE-CYCLE COSTS

- Reduce need for pit emptying
- Ensure a sustainable business model, including maintenance via service providers

PRESENT MODULAR, ATTRACTIVE INTERFACE

- Reduce / eliminate construction costs
- Provide clean and dignified product
- Eliminate odors and waste

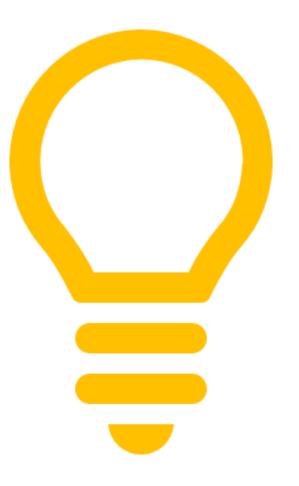
Transformative Technologies Commercialization (TTC) core processing technologies

ELECTROCHEMICAL

WET OXIDATION

DRY COMBUSTION

BIOLOGICAL



Credits: Bill & Melinda Gates Foundation

TÜV SÜD PSB | ISO Standards for Water and Sanitation

AIT TESTING CENTRE

- Assures that house owners purchase quality wastewater treatment products,
- Jointly develop a standard procedure to test performance efficiency of a wastewater treatment product,
- Certify and promote certified products only in the region.

AIT TESTING CENTRE

4

Testing Protocols

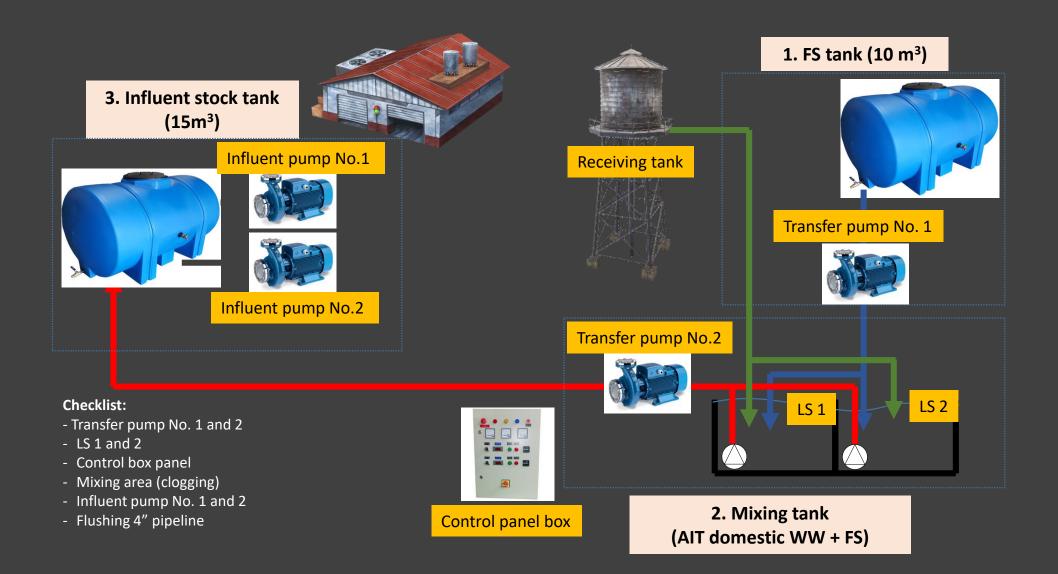
- Material test
 - EN 12566-1 (European Standard)
 - TIS: Packaged Wastewater Treatment Tanks For Residential Building
- Performance test
 - EN 12566-3 (European Standard)
 - NSF/ANSI 40 (US. Standard)
 - TIS: Packaged Wastewater Treatment Tanks For Residential Building
- Development of AIT-BORDA testing protocol for Prefabricated or Site-assembled Domestic Wastewater Treatment Plants

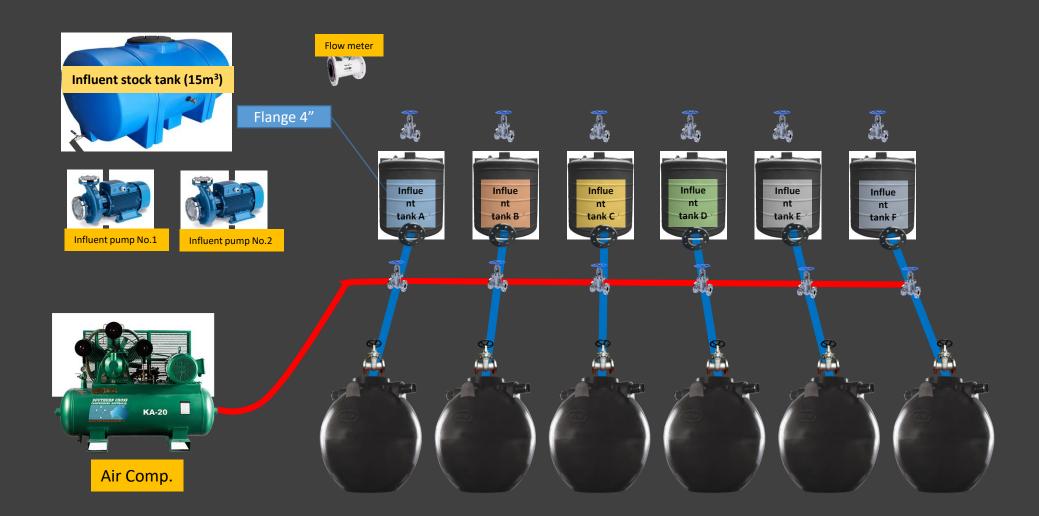
Performance Test

- EN 12566-3 (European Standard)
- NSF/ANSI 40 (US. Standard)
- AIT-BORDA protocol for Prefabricated or Siteassembled Domestic Wastewater Treatment Plants
- Testing Center

Comparison of Current Standards and AIT-BORDA Protocol

Item	EN 12566-3 (2005)	NSF/ANSI 40 (2013)	AIT-BORDA
Scope	For packaged and/or site assembled domestic wastewater treatment plants used for <u>populations up to 50</u> <u>inhabitants</u>	For residential wastewater treatment systems having capacities <u>1,514 – 5,678 L/day</u> (400 - 1,500 gal/day)	Up to <u>6,000 L/day (6 m³/day)</u>
Materials	Concrete, steel, PVC-U, Polyethylene (PE), Polypropylene (PP) and Glass Reinforced Polyester (GRP- UP)	Materials shall be durable and capable of withstanding stresses and wear during shipping, assembly, installation, and operation.	Concrete, steel, PVC-U, Polyethylene (PE), Polypropylene (PP) and Glass Reinforced Polyester (GRP- UP)
Monitoring parameters	BOD, TSS, Temperature, Power consumption, daily hydraulic flow	 pH, SS, BOD, CBOD (regular monitor) color, odor, oily film and foam (3 samples over testing period) 	 pH, BOD, TSS, Power consumption, daily hydraulic flow (Compulsory) TDS, TKN, TP (Optional)
Influent characteristics	 BOD = 150-500 mg/L (or COD = 300-1000 mg/L) TSS = 200-700 mg/L TKN = 25-100 mg/L (or NH₃-N = 22-80 mg/L) TP = 5-20 mg/L 	 BOD = 100-300 mg/L TSS = 100-350 mg/L Alkalinity > 175 mg/L as CaCO₃ <u>Note:</u> Values are averaged for 30 days 	- BOD = 150-500 mg/L - TSS = 200-700 mg/L


50 inhabitants x (*0.8 x 200 L/capita-day*) = 8,000 L/day (8 m³); (Source: ONEP, 2007)

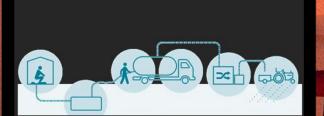

Comparison of Current Standards and AIT-BORDA Protocol

Item	EN 12566-3 (2005)	NSF/ANSI 40 (2013)	AIT-BORDA				
Hydraulic daily flow	Based on volume of the daily hydraulic capacity of the system	Based on volume of the daily hydraulic capacity of the system	Based on volume of the daily hydraulic capacity of the system				
Flow pattern							
	Time of day % of daily flow 6:00 - 9:00 30	Time of day % of daily flow 6:00 - 9:00 35	Time of day % of daily flow 6:00 - 9:00 30				
	9:00 - 12:00 15 12:00 - 18:00 0 18:00 - 20:00 40	6:00 - 9:00 35 11:00 - 14:00 25	9:00 - 12:00 15 12:00 - 18:00 0 18:00 - 20:00 40				
	20:00 - 23:00 15 23:00 - 6:00 0	17:00 - 20:00 40	18:00 - 20:00 40 20:00 - 23:00 15 23:00 - 6:00 0				
Tested period	Consecutive 38 + X * weeks	Consecutive 26 weeks	Consecutive 16 + X * weeks I.e Normal load 6 week - Overload 2 weeks - Normal load 2 weeks - Underload 2 weeks - Normal load 2 weeks -No load 2 weeks				
Number of sample data	26 data	96 data	32 data (twice a week)				
Method of sample collection	24-hr composite sampling	24-hr composite sampling	24-hr composite sampling				
Remark: * X is a period of system start up							

TESTING CENTRE

Acquisition	Pre-testing preparation	Performance test and evaluation	Post preparation	
ContractDelivery	 Check dimensions Check manual and plant conformity Mount and installation in testing field 	 Start up procedure Connect plant to wastewater influent Start 'performance test' Measurement and Analytics Evaluation Test report and certificate 	 Dismount plant Return to manufacturer 	

HYDRAULIC EFFICIENCY TEST


SETISTICS 14 jiwa

PERFORMANCE EFFICIENCY TEST

UEN

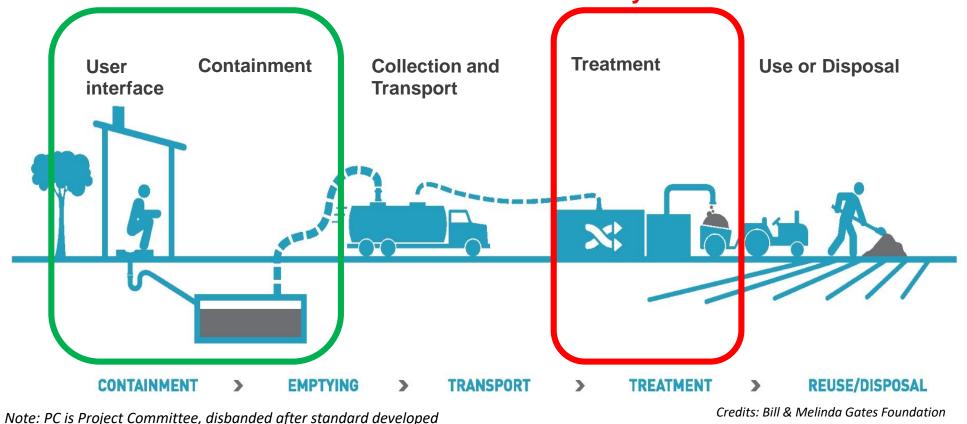
INF

AIT TESTING CENTRE

VISIONS

decentralized wastewater treatment products in Asia

VISIONS - Establish AIT as a knowledge hub for development of standards for decentralized wastewater treatment products,


> Establish AIT as a network hub for manufacturers, policy makers, users, and academicians.

> To be a recognized testing centre for

PC 305 and 318 – Forward Looking Standard

PC 305: Sustainable non-sewered sanitation systems (disbanded)

PC 318: Community scale resource oriented sanitation treatment systems

Bridging Sanitation Innovations to Practice