11th International Workshop on Decentralized Wastewater Treatment in Asia

Social implementation research on cultivation of rice suitable for sake brewing by effluent from large scale Johkasou —Eco-friendly sake "Sui Shigen" is newly released ! —

Dr. Shuhei Masuda

Associate Professor, Civil Engineering and Architecture, Department of Creative Systems Engineering, National Institute of Technology Akita College

- ✓ Goals for sustainable development
- ✓ Resource circulation in whole society is one of the important themes

Medieval Japan : Realization of a resource recycling society by sewerage resource and agriculture

Modern times : Disconnection of sewerage system and agriculture

✓ Agriculture depends on import fertilizer

Domestic Wastewater Treatment is…

- Scientifically safe water that is implemented by biological treatment and disinfection
- Containing nitrogen and phosphorus can be used as nutrition for plant

It's possible to utilize in hygienically condition as agricultural fertilizer

Advanced treatment : There are cases that require much energy to remove nitrogen and phosphorus

Prevention of hyper bloom of algae (Prevention of Eutrophication)

Vision: Goal of resource circulation **Energy** saving Sewerage Treatment Water Facility Environment Effluent from the Sewerage Agriculture **Treatment Facility Conservation** (Nitrogen and phosphorus remains) Import fertilizer Independence

Establishment of sustainable regional community by circulation of water & resource and preservation of environment

Effluent from the Sewerage Treatment Facility \times Rice suitable for sake brewing (brewer's rice) \times Sake

History

FY 2017~2019Test in the pilot paddy field : evaluation of safetyFY 2020~ongoingTest in the actual paddy field : evaluation of
quality & technology

Test in the pilot paddy field (brewer's rice "Akita Sake Komachi" \times effluent from the Sewerage Treatment Facility)

OExperiment with Reactor (effluent + rain water)

OExperiment with pot in greenhouse (effluent + tap water)

Safety: Influence of heavy metal for soil and unpolished rice unit: mg/kg

	ltem	Measured value	Standard value
Act to Prevent Soil Contamination on Agricultural Land Control standards for the prevention of the accumulation of heavy metals in the soils in the farmland	Cadmium (Rice : 35 samples, 2017~2019)	0.02 (Max:0.07)	0.4
	Copper (soil: 2 years)	16.1→ 8.8 ✓	125
	Arsenic (Soil : 2 years)	4.8→ 4.8 ✓	15
	Zink (Soil: 2 years)	85.0→ 84.1 ∨	120

Risk of heavy metal by irrigation of effluent is **low**

NEXT STEP: Search for the paddy field for demonstration

Condition

- Paddy field shall be located nearby the sewerage treatment facility
- **2** Can get approval by farmers
- ③ Irrigation of effluent in paddy field shall not affect to the around water supply

Source : Tohoku Regional Agricultural Administration Office website

Activities in the actual paddy field (FY 2021)

- ✓ Scale up to 35 a
- ✓ No chemical fertilizer cultivating brewer's rice by effluent from the Sewerage Treatment Facility + irrigation water
- ✓ Load of effluent from the Sewerage Treatment Facility: Field A < Field B < Field C

Status of growth

Quality of harvest

	Experiment zone (Average of 3 fields)	Judge	Control zone
Crude protein (6.5~8.0%)	8.9%	\bigtriangleup	8.2%
Thousand kernel weight (Less than 28.5g)	26.8 g	\bigcirc	27.1g
Percentage of whole grain (More than 65%)	78.9%	\bigcirc	77.5%
Cadmium (0.4 mg/kg)	0.06 mg/kg	\bigcirc	<0.05 mg/kg

- ✓ Total amount of harvest : 1.4 t (first class rice)
- ✓ Little higher value of Crude protein in experiment zone however, it is in the permissible range

Towards the Brewing !

Dewatsuru Sake Brewery agreed with the purpose of this project and readily agreed to brew it. (…but requires capital)

Crowdfunding (FAN AKITA)

*Currently renamed to SCOP

From 1- February to 15-March 2020, 2,168,000 JPY (from 290 people) was collected. Also received support from local businesses.

Thank you !

Sui Shi Gen Eco-friendly Sake: "醉思源" has debut !

The name of sake is derived from 「飲水思源 (In Sui Shi Gen)」 which is an idiom made from historical events of China.

飲水思源 (In Sui Shi Gen) ~ Those who drink it should remind of its source.~

Statue by Lake Tazawa

National Institute of Technology Akita College x Dewazuru Released in April 2020 Sake tasting reviews: Gorgeous *ginjoko*, refreshing sour taste, and good balance of rice flavor.

Collaboration with Students

Source: 15-February, 2022, Akita Kai Shimpo

Practical studies with actual & onsite experience
Education for sustainable development (ESD)
; Diversity, Mutuality, Finiteness, Fairness,
Collaboration, Responsibility

Acknowledgment

- Akita City Water and Sewerage Bureau
- Akita Prefecture Construction Bureau Sewerage Management Division
- Akita Research Institute for Food and Brewing
- Agricultural cooperative corporation Murakoshi Nosan
- Nissui Con Co., Ltd.
- Nippon Denki Kogyo Co., Ltd.
- Yuai Building Service Co., Ltd.

Part of the content of this presentation was supported by a Sumitomo Foundation Environmental Grant.

Thank you for your attention